EECE 431 Design and Analysis of Algorithms

August 30, 2017

Lectures

- Time: MWF 10:00 11:00 am.
- Place: Bechtel 204
- Lecturer: Professor Louay Bazzi Becthel 412, AUB extension: 3550 Louay.Bazzi@aub.edu.lb

Office hours: Mondays and Wednesdays 11:15 am - 1:15 pm.

Catalog Description

This course covers techniques for the design and analysis of efficient algorithms. Topics include: sorting algorithms including merge-sort, quick-sort, and counting-sort; median and order statistics algorithms; sorting lower bound; divide-and-conquer design strategy; polynomial and matrix multiplication algorithms; balanced search trees; hash tables; augmenting data structures; number-theoretic algorithms; dynamic programming; greedy algorithms; graph algorithms including graph traversal algorithms and applications, minimum spanning tree, shortest path algorithms; distributed algorithms; network flows; introduction to NP-completeness and intractability. 3 Cerdits.

Prerequisites

By course: EECE 330.

By topic: programming and elementary data structures.

Textbook

"Introduction to Algorithms", by Cormen, Leiserson, Rivest, and Stein, MIT press, third edition.

Course objectives

- Teach the student the fundamental algorithms
- Teach the student how to analyze the performance of algorithms
- Teach the student the fundamental algorithmic design strategies

Topics

1.	Foundations	8 hours
	• Introduction: design and analysis of algorithms, insertion-sort, merge-sort	
	• Asymptotic notations, solving recurrences	
	• Divide-and-conquer algorithms: modular exponentiation; Strassen's algorithm.	
	• Polynomials and long integers multiplication; division algorithm; Euclierithm.	d's algo-
2.	Dynamic programming	3 hours
	Longest common subsequence, and Matrix chain multiplication	
3.	Introduction to graphs and trees	1 hour
	Proofs	
3.	Sorting and order statistics	8 hours
	• Quick-sort, randomized algorithms	
	• Sorting lower bounds, and counting-sort	
	• Medians and order statistics algorithms	
4.	Data structures	8 hours
	• Review of elementary data structures, binary-search trees, and priority queues	
	• Red-Black trees	

- Augmenting data structures: dynamic order statistics.
- Hash functions
- 5. Graph algorithms
 - Elementary graph algorithms Breadth-first search, depth-first search, and applications.
 - Minimum spanning tree: Greedy algorithms, Prim's minimum spanning tree algorithm
 - Shortest path algorithms Dijkastra's algorithm, Bellman-Ford algorithm, and Floyd-Warshall algorithm
 - Network Flow
- 6. Introduction to complexity theory

Tractable and intractable problems, definition of the classes P and NP, NP-completeness, standard NP-complete problems.

7. Selected topics as time permits

Problem sets, exams, and grading

We will have around 9 problem sets, a midterm, and a final exam.

The following grading system will be adopted:

• Weekly problem sets: 25 %

The problem sets are intended to help you understand the material. If you do not work on the problem sets, do not expect to pass the exams.

- Exams: 70 %
 - Midterm (35%): TBA
 - Final (35%): TBA
- Assessment of the instructor: 5 %

$\underline{\text{Web}}$

Course webpage on Moodle.

10 hours

3 hours

2 hours